

The Absorption Spectrum of Europium

G. Smith and F. S. Tomkins

Phil. Trans. R. Soc. Lond. A 1976 283, 345-365

doi: 10.1098/rsta.1976.0089

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

[345]

THE ABSORPTION SPECTRUM OF EUROPIUM

By G. SMITH

Department of Astrophysics, Oxford University, England

AND F. S. TOMKINS

Argonne National Laboratory, Argonne, Illinois, U.S.A.

(Communicated by W. R. S. Garton, F.R.S. - Received 23 February 1976)

[Plate 1]

CONTENTS

	PAGE	I	PAGE
1. Introduction	345	(b) 4f ⁷ (8 S) 5d 6p	35 6
2. Experimental	346	(c) 4f ⁷ (8S) 6s 7p (d) 4f ⁶ (⁷ F) 5d 6s ²	$\begin{array}{c} 357 \\ 357 \end{array}$
3. Results	347	(e) 4f ⁶ (⁷ F) 5d ² 6s	358
(a) Wavelengths, intensities and		$(f) 4f^{6}(^{7}F) 5d^{3}$	359
upper energy levels	354	(g) Levels based on excited	
(b) J -values and g_J -values	354	parent terms of 4f ⁷	359
(c) Isotope shifts	355	5. Long series	359
4. Configuration structure	356	6. Conclusion	364
(a) 4f ⁷ (8S) 6s 6p	356	References	365

The europium absorption spectrum has been photographed at high resolution in the spectral region 7200-2100 Å which includes the entire sharp-line spectrum longward of the first ionization limit. Wavelengths and wavenumbers have been determined by comparison with thorium standards. Since all transitions take place from the ground level the wavenumbers correspond to excitation energies of even-parity levels with total angular momentum (J) of $\frac{5}{2}$, $\frac{7}{2}$ or $\frac{9}{2}$. J-values and g_J -values have been determined for many of these levels from a study of the longitudinal Zeeman effect in the 5 T (50 kG) field of a superconducting solenoid magnet. The configurations 4f7 (8S) 6s 6p, 4f⁷ (8S) 6s 7p, 4f⁷ (8S) 5d 6p and 4f⁶ (7F) 5d 6s² are discussed in detail. Levels of 4f⁶ (7F) 5d² 6s and 4f⁷ (6I) 6s 6p are reported for the first time. Several long series and parts of series have been discovered among the highly excited levels. Some of these can be identified with levels arising from 4f⁷ 6s (⁹S) np and 4f⁷ 6s (⁷S) np but interpretation is complicated by the presence of several perturbations of unknown origin.

1. Introduction

Our present knowledge of the electronic energy-level structure of neutral europium is based mainly on the original analysis by Russell & King (1939) who identified the ground level as the level 8S₄ of the configuration 4f⁷ 6s² and who discovered many configurations built upon the

Vol. 283. A 1313.

[Published 12 October 1976

4f7 (8S) core. Their paper listed numerous levels which they were unable to assign to configurations and Smith & Wilson (1970), by means of a parametric calculation, were able to identify some of these levels as belonging to 4f⁶ (7F) 5d 6s². The proximity to a half-filled shell of 4f electrons should result in a somewhat less complex structure than that of most other rare earths, but, despite this advantage, many features of the excited configurations remain unknown. As a contribution towards a better understanding of the structure we have undertaken a detailed investigation of the absorption spectrum in the region 2100-7200 ņ.

Since the ground level, which is of odd parity, is separated by about 1.5 eV from the lowest excited level, an absorption spectrum at moderate temperature consists solely of ground-level transitions and yields directly the positions of even-parity excited levels with $J = \frac{5}{2}, \frac{7}{2}$ or $\frac{9}{2}$. By direct photography we have determined wavelengths and wavenumbers in terms of thorium standards for over 350 absorption lines. The resolution of our spectra has permitted us to determine the larger isotope shifts and to identify those lines with particularly wide hyperfine structure. In addition we have studied the longitudinal Zeeman effect in the 5 T (50 kG) field of a superconducting solenoid magnet. No accurate Zeeman data for the excited levels of the neutral atom were previously available. Our measurements have enabled us to make unambiguous determinations of J-values and g_J-values for over 200 upper levels. This information, as well as providing a critical check on the assignments made by Russell & King (1939), has led to the discovery of many new levels based on both the 4f6 and 4f7 cores.

Our spectra include the ionization limits defined by the ⁹S₄ and ⁷S₃ levels of the configuration 4f⁷ 6s in Eu II. A description of the high series members (n > 40) converging towards each limit and the autoionization structure between the two limits has already been published (Smith & Tomkins 1975). This paper will be referred to in subsequent sections as I. Hidden within the complex sharp-line spectrum just below the first ionization limit we have discovered at least five series, all of them strongly perturbed. Attempts to establish the connections between these series and the well-defined series at lower principal quantum numbers (n < 20) have not yet proved successful.

2. Experimental

Apart from a few visible lines, which we treated separately, the entire sharp-line absorption spectrum lies between 2185 and 3600 Å, and can be photographed at high resolution in a single exposure using the Argonne Laboratory's 9 m (30 ft) concave-grating spectrograph (Tomkins & Fred 1954). A simple absorption furnace, consisting of a stainless-steel tube surrounded by a nichrome heating coil, was placed between the spectrograph slit and a positive-column hydrogen discharge tube providing a background continuum. The furnace, together with a water-cooled jacket, was designed to fit within the cylindrical cavity of a superconducting solenoid magnet capable of producing a 5 T (50 kG) field. Once correctly positioned the furnace was loaded with a few lumps of europium metal and filled to a pressure of 265 Pa (2 Torr) with argon buffer gas. Exposures of the absorption spectrum were made both with and without the magnetic field. Furnace temperatures were varied between 500 and 800 °C so as to cover a wide range of line-strength. In some exposures a Babinet-Soleil compensator and Rochon prism were inserted into the optical train so that the groups of σ^+ and σ^- components could be photographed separately. This separation proved particularly helpful in regions where patterns

due to neighbouring lines were overlapping. In exposures intended for wavelength measurement the europium spectrum in the second order of a 1200 line/mm grating was photographed alongside a first order comparison spectrum generated by means of an electrodeless thorium lamp. Exposure times of about 60 s on Kodak SWR plates were found to be adequate. The Zeeman patterns of the visible lines were photographed in a separate experiment using a tungsten lamp as background source and 103F or IN plates as appropriate.

Wavelength measurements and reduction to vacuum wavenumbers were made with the semi-automatic photoelectric scanning comparator and data reduction process previously described by Tomkins & Fred (1951, 1963). Thorium wavelengths were taken from Giacchetti, Stanley & Zalubas (1970). All lines used for wavelength measurements were identified on at least two sets of plates, but the final wavelengths are weighted heavily in favour of one set which was judged to be much superior to the others. Best-fit g_J-factors were deduced from measurements on the Zeeman patterns by means of a routine described by Vander Sluis (1956). As a first step all apparently unperturbed patterns were analysed for both upper and lower g_sfactors. By comparing the mean ground-level g_J-factor for each set of exposures with the accurate value of 1.9935 ± 0.0003 determined by Sandars & Woodgate (1960) we obtained a calibration of the magnetic field. The field was found to vary slightly between exposures but was always within the limits $4.80 \pm 0.05 \,\mathrm{T}$ ($48.0 \pm 0.5 \,\mathrm{kG}$). The mean error in the field determination appropriate to a single set of exposures was about 0.02 % or 1 mT (10 G). Having calibrated the field we recalculated the upper g_{J} -factors assuming the ground-level value to be fixed at 1.9935. A small perturbation in a Zeeman pattern could cause a small systematic error in the derived g_J-factor. An estimate of this error, based on the departure of the corresponding ground-level g_J -factor from the mean for a set of exposures, was included in the error quoted for each result.

Table 1. Landé g_J -factors for the configuration 4f7 (8S) 6s 6p in Eu i

		(~)	os op mi mar		
level†			_		
cm^{-1}	term	J	$g_J(LS) \ddagger$	$g_J^{ m (int)} \S$	$g_J^{(\mathrm{expt})} $
14067.79	10P	$\frac{7}{2}$	2,222	2.200	2.191 (5)
14563.61	^{10}P	$\frac{9}{2}$	1.960	1.932	1.929 (5)
15890.48	$^{8}\mathrm{P}$	$\frac{5}{2}$	2.286	2.234	2.227(2)
15952.32	^{8}P	$\frac{7}{2}$	1.937	1.877	1.875 (2)
16611.81	$^{8}\mathrm{P}$	$\frac{9}{2}$	1.778	1.804	1.795(2)
17340.65	^{6}P	$\frac{\overline{7}}{2}$	1.714	1.798	1.787(2)
17707.40	$^{6}\mathrm{P}$	<u>5</u>	1.886	1.944	1.94(1)
21444.59	$^{8}\mathrm{P}$	<u>5</u>	2.286	2.280	2.272(1)
21605.22	$^{8}\mathrm{P}$	$\frac{\overline{7}}{2}$	1.937	1.934	1.926(5)
21761.30	^{8}P	ରୀଧ ନାଧ୍ୟ ନାୟ ଶ୍ରୀୟ ନାୟ ନାୟ ଶ୍ରୀୟ	1.778	1.779	1.773(2)

- † Energy levels are taken from Russell & King (1939).
- g_{J} -factors calculated in LS-coupling.
- g_J -factors calculated in intermediate coupling: Smith & Wybourne (1965).
- Measured g_J -factors.

3. RESULTS

In this section we discuss those results which can be directly inferred from measurements on the plates. The interpretation of the energy structure will be considered in §§ 4 and 5. Table 1 contains the measured g_J-values for the upper energy-levels associated with the visible lines: no attempt was made to redetermine the wavelengths of these lines. Results for the ultraviolet

347

Table 2. Absorption spectrum of Europium 2212-3600 Å: wavelengths, INTENSITIES, UPPER LEVELS AND g_J FACTORS

			upper level				
wavelength/Å	intens	sity	cm-1	J	g_J	designation	
589.260	100	IS	27852.95	$\frac{5}{2}$	2.009 (5)	4f6 (7F) 5d 6s2	$^8\mathrm{D}$
3487.278	10	IS	28667.46	চ এচ এন এন এচ	2.194 (1)	4f ⁷ (⁸ S) 5d 6p	$^{10}\mathrm{F}$
3467.871	200		28827.88	$\frac{7}{2}$	1.811 (1)	4f ⁶ (⁷ F) 5d 6s ²	^{8}D
3457.037	300	T.O.	28918.22	$\frac{7}{2}$	1.841 (2)	4f ⁷ (8S) 5d 6p	10F
3432.513	300	IS	29124.83	$\frac{3}{2}$	1.440 (1)	4f ⁶ (⁷ F) 5d 6s ²	8G
3425.29	1 350	TC	29186.2	$\frac{\overline{2}}{7}$	1.70 (3)	4f ⁷ (8S) 5d 6p	10F 8G
3353.698 3350.397	500 500	IS IS	$29809.26 \\ 29838.63$	$\frac{\overline{2}}{9}$	$1.465 (2) \\ 1.676 (1)$	$4f^6$ (7F) 5d 6s ² $4f^6$ (7F) 5d 6s ²	°G 8D
3334,313	5000	10	29982.56	2 <u>5</u>	2.06 (1)	4f ⁶ (⁷ F) 5d 6s ²	^{8}P
3322.254	1000		30091.39	<u>5</u>	1.618 (1)	4f ⁶ (⁷ F) 5d 6s ²	${}^8{ m F}$
3262.482	300		30642.68	$\frac{5}{2}$	1.470 (3)	4f ⁶ (⁷ F) 5d 6s ²	8G
3247.538	1000		30783.67	$\frac{\overline{7}}{2}$	$1.551\ (2)$	$4f^{6}(^{7}F)$ 5d $6s^{2}$	$^8\mathrm{F}$
3246.011	800		30798.16	$\frac{5}{2}$	P2.14 (1)	4f ⁷ (8S) 5d 6p	$^8\mathbf{D}$
		IS	30800.71†	<u>3</u>	P2.80 (1)	4f ⁷ (8S) 5d 6p	^{8}D
3241.386	800	T.O.	30842.10	$\frac{7}{2}$	1.824 (3)	4f ⁷ (⁸ S) 5d 6p	\mathbf{q}_{8}
3235.108	600	IS	30901.95	<u>2</u> 5	1.706 (2)	4f ⁷ (8S) 5d 6p	8D
$3230.57 \\ 3213.745$	$\begin{array}{c} 2 \\ 2500 \end{array}$	IS IS	$30945.4 \\ 31107.36$	<u>2</u> <u>5</u>	$egin{array}{c} 2.49 \ (4) \ 1.954 \ (6) \end{array}$	4f ⁷ (⁸ S) 5d 6p 4f ⁶ (⁷ F) 5d 6s ²	¹⁰ D
3212.804	6000	10	31107.30	$\frac{2}{7}$	1.928 (5)	4f ⁶ (⁷ F) 5d 6s ²	8P
3210.566	3000		31138.16	7 7	2.006 (5)	4f ⁷ (⁸ S) 5d 6p	^{10}D
3203.844	20		31203.49	5/2	0.540(2)	4f ⁶ (⁷ F) 5d ² 6s	10I
3185.552	200	IS	31382.66	$\frac{9}{2}$	1.860(2)	4f ⁷ (8S) 5d 6p	$^{10}\mathrm{D}$
3168.278	400	IS	31553.76	$\frac{9}{2}$	1.522(2)	$4f^{6}$ (7F) 5d $6s^{2}$	$^8\mathrm{F}$
3158.296	2		31653.48	$\frac{7}{2}$	0.97(3)	$4f^{6}$ (7F) $5d^{2}$ 6s	^{10}I
3136.233	2	IS	31876.15	$\frac{3}{2}$	1.719(2)	4f ⁷ (8S) 5d 6p	$^8\mathrm{F}$
3123.770	5	IS	32003.33	$\frac{\frac{7}{2}}{9}$	1.628 (2)	4f ⁷ (8S) 5d 6p	$^{8}\mathrm{F}$
3111.427	8000	TC	32130.28	$\frac{\overline{2}}{9}$	1.747(2)	4f ⁶ (⁷ F) 5d 6s ²	8P
$3106.162 \\ 3102.359$	$\begin{array}{c} 1200 \\ 20 \end{array}$	IS	$32184.73 \\ 32224.19$	<u>2</u> 9.	1.615 (2)	4f ⁷ (⁸ S) 5d 6p 4f ⁶ (⁷ F) 5d ² 6s	⁸ F ¹⁰ I
3085.684	80	IS	32398.32	2 7	$egin{array}{c} 1.17 \ (1) \ 2.195 \ (1) \end{array}$	4f ⁷ (8S) 5d 6p	10P
3066.933	400	IS	32596.39	9	1.93 (1)	4f ⁷ (⁸ S) 5d 6p	10P
3058.975	1000	IS	32681.19	7 2	1.729(1)	$4f^{6}$ (7F) 5d $6s^{2}$	6 P
3032.928	50	IS	32961.85	$\frac{7}{2}$	0.857(1)	4f ⁶ (7F) 5d 6s ²	$^6\mathrm{H}$
3007.018	2		33245.85	$\frac{7}{2}$	1.483(2)	$4f^{6}(^{7}F) 5d^{2} 6s$	
2974.045	2		33614.42	$\frac{5}{2}$	1.479(2)	$4f^{6}$ (7F) 5d $6s^{2}$	$^{6}\mathrm{D}$
2959.51	2	**	33779.50	<u>9</u> . 2 5	1.48 (1)	4f ⁶ (⁷ F) 5d ² 6s	0.75
2958.885	600	IS	33786.64	$\frac{5}{2}$	2.276(2)	4f ⁷ (8S) 5d 6p	8P
$2950.798 \\ 2948.225$	$\begin{array}{c} 400 \\ 200 \end{array}$	WW WW	$33879.23 \\ 33908.81$	7 7 7	$egin{array}{c} 1.97 \ (2) \ 2.180 \ (2) \end{array}$	4f ⁷ (⁸ S) 6s 7p 4f ⁷ (⁸ S) 6s 7p	¹⁰ P ¹⁰ P
2948.225 2928.417	200	** **	34138.16	2 7	1.495(3)	4f ⁶ (⁷ F) 5d 6s ²	_е D
2910.877	$\overset{2}{2}$		34343.85	2 <u>5</u>	1.32(2)	4f ⁶ (⁷ F) 5d 6s ²	6F
2908.993	2000	W	34366.09	9.	1.803 (3)	4f ⁷ (8S) 6s 7p	^{8}P
2893.838	500	W	34546.06		$1.96\ (1)$?4f ⁶ (7F) 5d ² 6s	^{10}P
2893.013	1500	W	34555.91	$\frac{5}{2}$	P2.27 (2)	4f ⁷ (⁸ S) 6s 7p	$^8\mathrm{P}$
2892.502	2500	W	34562.01	<u>7</u>	P1.91 (3)	4f ⁷ (8S) 6s 7p	$^8\mathrm{P}$
2878.848	800	¥47	34725.92	$\frac{9}{2}$	1.719 (2)	4f ⁷ (⁸ S) 5d 6p	8P
2877.774	400	W	34738.88	$\frac{3}{2}$	1.542 (3)	4f ⁶ (⁷ F) 5d 6s ²	$^{6}\mathrm{D}$
$2852.177 \\ 2807.169$	$\begin{array}{c} 25 \\ 150 \end{array}$	IS W	$35050.64 \\ 35612.58$	$\frac{\overline{2}}{7}$	1.394 (4) 1.716 (3)	4f ⁶ (⁷ F) 5d 6s ² 4f ⁷ (⁸ S) 6s 7p	6F 6P
2800.000	$\begin{array}{c} 150 \\ 250 \end{array}$	W	35703.76	<u>2</u> <u>5</u>	1.89 (1)	4f ⁷ (8S) 6s 7p	6P
2797.812	50	**	35731.68	$\frac{2}{9}$	1.458 (1)	4f ⁷ (8S) 5d 6p	$^{6}\mathrm{F}$
2776.512	300		36005.79	$\frac{\frac{2}{7}}{2}$	2.150(2)	4f ⁶ (⁷ F) 5d ² 6s	10P
2772.898	200		36052.71	$\frac{5}{2}$	$2.202\ (1)$,	$^8\mathrm{P}$
2771.435	30		36071.74	<u>9</u>	1.447(3)	$4f^{6}$ (7F) 5d $6s^{2}$	$^{6}\mathrm{F}$
2770.714	10	IS	36081.12	$\frac{7}{2}$	1.462(2)	4f ⁷ (8S) 5d 6p	6F
2755.153	4	IS	36284.90	$\frac{3}{2}$	1.420(2)	$4f^{7}$ (8S) 5d 6p	$^6\mathrm{F}$
2747.830	1200		36381.59	$\frac{\dot{\overline{2}}}{5}$	1.841 (5)		
$2745.609 \\ 2743.286$	$\begin{array}{c} 800 \\ 1500 \end{array}$		$36411.02 \\ 36441.86$	2 5	P1.624 (5) P2.224 (5)	4f ⁷ (8S) 6s 7p	$^{8}\mathrm{P}$
2738.568	200		36504.63	କ)ବାର ଜାନ ମାଧିକୀର କାର୍ଷ ମଧ୍ୟ ମଧ୍ୟ ହାର କାର୍ଷ ମଧ୍ୟ କରେ ଅନ୍ତର୍ଶ୍ୱର ମଧ୍ୟ ହାର ହାର କରେ କରିଥାରୁ ରହିର ହାର ମଧ୍ୟ ହାର ମଧ୍	1.793(5)	ar (p) os th	1
2735.248	1000		36548.94	2 9 0	1.810 (5)		
2732.598	500		36584.38	$\frac{2}{5}$	P1.971 (5)	4f ⁷ (8S) 5d 6p	$^8\mathrm{D}$
		IS	$36586.35\dagger$	$\frac{\mathbf{\tilde{3}}}{2}$	P2.43(2)	$4f^7$ (8S) $5d$ $6p$	$^8\mathrm{D}$
2731.365	600		36600.90	$\frac{7}{2}$	1.91 (1)		
2723.954	2000		36700.46	$\frac{\gamma}{2}$	1.83(1)	$4f^{7}$ (8S) 5d 6p	$^8\mathrm{D}$

Table 2 (cont.)

ABSORPTION SPECTRUM OF EUROPIUM

				(, , ,			
			upper level				
wavelength/Å	inten	sity	cm^{-1}	\boldsymbol{J}	g_J	designation	
2721.300	15		36736.26	5	1.103 (1)	4f ⁶ (⁷ F) 5d 6s ²	6 G
			36867.04†	5 21 29 215 27. 9 217 215 217 215 217 217 217 217 217 217 217 217 217 217	$1.662\ (3)$	4f ⁷ (8S) 5d 6p	$^8\mathrm{D}$
2709.981	3000		36889.69	<u>9</u>	$1.729\ (2)$	$4f^7$ (8S) 5d 6p	$^8\mathrm{D}$
2701.778	10		37001.69	$\frac{5}{2}$	1.297(1)		
2695.062	100		37093.89	?	1.99(3)		
2692.719	200	W	37126.16	$\frac{9}{2}$	1.795(2)		
2690.806	20		37152.55	$\frac{7}{2}$	1.245(2)	$4f^{6}$ (7F) 5d $6s^{2}$	^{6}G
2682.582	400	W	37266.44	<u>5</u>	2.380 (1)		
2680.051	15		37301.64	$\frac{\frac{1}{2}}{2}$	1.311 (2)		
2665.691	20		37502.57	$\frac{75}{2}$	P		
2665.529	30		37504.85	$\frac{1}{2}$	P		
2659.528	4		37589.48	9.	P1.61 (2)		
$2659.398 \\ 2643.815$	400 200		$37591.31 \\ 37812.87$	$\frac{\overline{2}}{7}$	P1.58 (2)		
2045.019	200		31312.31	<u>2</u>	$?1.82\ (3) \ ?2.17\ (3)$		
2641.090	50		37851.88	7	1.65 (1)		
2637.114	100		37908.94	9	1.375 (1)	4f ⁶ (7F) 5d 6s ²	$^6\mathrm{G}$
2631.619	100		37988.09	9	1.389 (2)	11 (1) 00 03	G
2625.768	50		38072.73	7/2	1.87 (1)		
2625.248	15		38080.28	5	1.820 (3)		
2619.268	200		38167.22	<u>\$</u>	1.491 (1)	4f ⁷ (8S) 5d 6p	$^{6}\mathrm{D}$
2612.712	20	W	38262.98	<u>9</u>	1.699(2)	22 (S) 32 3p	_
2609.822	30	, ,	38305.35	7/2	1.432 (1)		
2606.052	50	ww	38360.76	<u>9</u> .	1.804 (4)		
2602.581	80		38411.91	7/2	1.598(1)	4f ⁷ (8S) 5d 6p	$^6\mathrm{D}$
2591.200	4		38580.62	<u></u>	$1.54 \ (2)$	(/ 1	
2584.720	2		38677.34	$\frac{\overline{7}}{2}$	1.76(2)		
2580.613	15		38738.88	$\frac{\overline{5}}{2}$	$2.03\ (1)$		
2568.744	100	\mathbf{W}	38917.87	$\frac{\overline{7}}{2}$	1.796(2)	4f ⁷ (8S) 5d 6p	$^6\mathrm{P}$
2564.962	400	WW	38975.25	<u>9</u>	1.754(3)	4f ⁷ 6s (⁹ S) 8p	$^8\mathrm{P}$
2562.342	5		39015.09	<u>9</u> .	1.42(2)	, , -	
2561.848	50		39022.63	$\frac{5}{2}$	2.07(2)	4f ⁷ (8S) 5d 6p	$^6\mathrm{P}$
2559.929	5		39051.88	$\frac{9}{2}$	\mathbf{P}	4f ⁷ (8S) 5d 6p	$^8\mathrm{F}$
2559.407	2		39059.84	$\frac{7}{2}$	P	4f ⁷ (8S) 5d 6p	$^{8}\mathrm{F}$
2554.367	10		39136.89	$\frac{5}{2}$	P	?4f ⁷ (8S) 5d 6p	${}^8{ m F}$
2551.588	15		39179.52	$\frac{5}{2}$	2.07(1)	4f ⁷ 6s (⁹ S) 8p	$^{8}\mathrm{P}$
2550.769	2		39192.10	<u>y.</u>	1.70(1)		
2550.006	1	WW	39203.83	$\frac{7}{2}$	2.16(2)	4f ⁷ 6s (⁹ S) 8p	^{10}P
2546.587	15	WW	39256.45	<u>y.</u> 2	1.95 (1)	$4f^7 6s (^9S) 8p$	$^{10}\mathrm{P}$
2541.935	2		39328.30	1 2 5	1.80 (2)		
2523.770	5		39611.35	25	1.592(2)		
2513.656	5		39770.72	. ' 2	1.99 (3)		
2512.904	20		39782.62	<u>2</u> 5	1.639 (1)		
2494.658	5		40073.57	$\frac{\overline{2}}{2}$	$egin{array}{c} 2.305 \ \mathrm{P} \end{array}$	457 Ga (75) Ef	817
$2484.543 \\ 2479.186$	4 200	W	40236.71	<u>.</u>		4f ⁷ 6s (⁷ S) 5f	${}^8{ m F}$
2479.130 2476.179	50	W	$40323.65 \\ 40372.61$	<u>2</u>	1.042 (4) 1.58 (1)	$4f^{7} (^{6}I) 6s 6p$	
2476.116	500	**	40373.63	$\frac{2}{7}$	1.436 (1)		
2471.104	1500		40455.51	<u>9</u>	1.768 (3)	4f ⁷ 6s (⁷ S) 8p	$^8\mathrm{P}$
2468.811	10		40493.09	2 7	1.529(3)	±1 03 (5) 0p	•
2461.745	1000		40609.30	$\frac{2}{7}$	1.89 (1)	4f ⁷ 6s (⁷ S) 8p	$^8\mathrm{P}$
2460.502	800		40629.82	5	2.264 (2)	4f ⁷ 6s (⁷ S) 8p	^{8}P
2450.693	5		40792.43	5	1.605(3)	22 ob (o) op	-
2447.649	10	WW	40843.16	<u> </u>	1.013(5)	4f ⁷ (⁶ I) 6s 6p	
2446.496	150	W	40862.41	$\frac{2}{7}$	1.692(2)	4f ⁷ 6s (⁷ S) 8p	$^{6}\mathrm{P}$
2441.897	100	W	40939.36	5/2	1.88(1)	$4f^7 6s (^7S) 8p$	$^{6}\mathrm{P}$
2440.524	400		40962.39	<u>9</u>	1.64(2)	· / -	
2433.632	5		41078.38	<u>5</u>	1.149(2)		
2425.060	500		41223.58	는 [에 라)에 마)에 마)에 마)에 마)에 마)에 마)에 마)에 마)에 마)에 마	$1.708\ (4)$		
2423.78	2		41245.34		P		
2423.727	20	W	41246.25		P		
2423.632	800		41247.86	5	P		
2421.569	1500		41283.00	5	2.256(5)	4f ⁷ 6s (⁹ S) 9p	^{8}P
2421.418	2000		41285.58	ନ)ର ପ୍ରାପ ନ ର ନ)ର ନ)ର ନ ର	1.762 (5)	4f ⁷ 6s (⁹ S) 9p	$^8\mathrm{P}$
2418.483	1000		41335.67	$\frac{7}{2}$	1.775 (1)		
2414.24	2		41408.47	<u>9</u> 2 5	1.609 (5)		
2409.037	5	T 4 7 T 4 T	41497.75	$\frac{3}{2}$	1.357 (3)	407 A (00) A	1075
2408.005	150	WW	41515.52	<u>*</u>	2.210 (5)	4f ⁷ 6s (⁹ S) 9p	^{10}P

Table 2 (cont.)

			upper level				
wavelength/Å	inten	sity	cm^{-1}	\boldsymbol{J}	g_J	designation	
2406.561	25 0	WW	41540.43	<u>9</u> .	1.97 (1)	4f ⁷ 6s (⁹ S) 9p	^{10}P
2403.666	150		41590.46	କ୍ରୀର ମଧ୍ୟ କ୍ରୀର କ୍ରୀର ମଧ୍ୟ କ୍ରୀର କ୍ରୀର କ୍ରୀର କ୍ରୀର କ୍	1.537 (1)		
2401.92	2		41620.68	9.	0.95(1)		
$2401.090 \\ 2397.758$	8 4		$41635.08 \\ 41692.92$	<u>2</u> 7	1.608 (2) 1.466 (1)		
2394.4 76	10		41750.07	2 5	0.918(2)		
2389.245	500		41841.47	. <u>9</u>	1.637 (1)		
2386.140	2		41895.92	$\frac{\overline{7}}{2}$	1.391 (3)		
2385.356	20		41909.69	5 2	1.692 (1)		
2383.34	1		41945.18	1 ½ 9	0.38(3)	407 (8C) F 1 C	970
$2379.640 \\ 2377.486$	$\frac{2500}{800}$		$42010.34 \\ 42048.40$	<u>2</u> <u>9</u>	1.771 (1) 1.596 (1)	4f ⁷ (8S) 5d 6p	$^8\mathrm{P}$
2375.298	2000		42087.13	$\frac{2}{7}$	1.86 (1)	4f ⁷ (8S) 5d 6p	$^{8}\mathrm{P}$
2372.831	1500		42130.89	$\frac{25}{2}$	2.04(1)	4f ⁷ (8S) 5d 6p	^{8}P
2372.371	500		42139.06	$\frac{5}{2}$	P 1.4 (1)	. , -	
2371.900	400		42147.42	$\frac{7}{2}$	1.642(2)		
2365.508	300 10		42261.30	$\frac{1}{2}$	1.583 (1)		
$2361.910 \\ 2359.726$	150		42325.67 42364.85	<u>2</u> 9	1.463 (1) 1.232 (5)	4f ⁷ (⁶ I) 6s 6p	
2358.078	150		42394.46	$\frac{2}{5}$	1.74(2)	41 (1) 03 OP	
2357.565	100		42403.68	9.	0.867(5)	4f7 (6I) 6s 6p	
2352.677	5		42491.77	$\frac{5}{2}$	1.15 (1)		
2352.594	2	7.11	42493.27	5	P (2)		
$2352.237 \\ 2342.312$	300	W	42499.72	2 9	1.657(2)		
2342.312 2336.442	5 3	WW	$42679.78 \ 42787.00$	7	$egin{array}{c} 1.517 \ (1) \ 2.210 \ (3) \end{array}$	4f ⁷ 6s (⁹ S) 10p	10 P
2335.665	3	WW.	42801.24	<u>9</u>	1.97 (3)	4f ⁷ 6s (⁹ S) 10p	10P
2331.065	500	W	42885.69	$\frac{7}{2}$	1.88 (1)	() P	
2329.001	800		42923.70	?	1.88 (1)		
2328.718	1000	W	42928.91	<u>9</u> 2	1.755 (2)	4f ⁷ 6s (⁹ S) 10p	^{8}P
2327.804	$\begin{array}{c} 600 \\ 200 \end{array}$	W	42945.76	5	1.895 (5)	4f ⁷ 6s (⁹ S) 10p	^{8}P
$2327.105 \\ 2326.134$	200		42958.67 42976.60	<u>2</u> 9	1.569 (2) 1.518 (1)		
2320.833	10		43074.75	$\frac{2}{5}$	1.645 (3)		
2316.163	20		43161.59	$\frac{\frac{2}{9}}{2}$	1.328 (5)		
2315.816	10		43168.06	$\frac{\overline{7}}{2}$	1.619 (5)	4f ⁷ 6s (⁷ S) 9p	^{6}P
2312.678	30		43226.63	$\frac{7}{2}$	1.620 (2)	10m o (mc) o	
$2312.571 \\ 2309.645$	$\frac{60}{10}$		43228.62 43283.39	$\frac{3}{2}$	1.84 (1)	4f ⁷ 6s (⁷ S) 9p	^{6}P
2308.678	600		43301.51	<u>2</u> <u>5</u>	1.608 (1) 2.210 (3)	4f ⁷ 6s (⁷ S) 9p	$^8\mathrm{P}$
2307.276	150		43327.82	<u>9</u>	1.591 (5)	11 05 (b) 0p	•
2 307.148	800		43330.23	$\frac{9}{2}$	1.787(4)	4f ⁷ 6s (⁷ S) 9p	$^8\mathrm{P}$
2305.509	5		43361.03	?	2.05 (1)		
2304.909	400		43372.31	ଇ ରଞ୍ଚାଷ୍ଟ ର ୯•	P 1.15 (5)	4f ⁷ (⁶ I) 6s 6p	
$2304.478 \\ 2303.855$	$\begin{array}{c} 400 \\ 200 \end{array}$		$43380.42 \\ 43392.16$	2 7	P 1.15 (5) 1.633 (3)	$4f^{7} (^{6}I) 6s 6p$	
2301.912	200		43428.78	2 ?	P		
2301.413	60		43438.19	?	1.502 (5)		
2299.214	5		43479.74	$\frac{9}{2}$	1.253(3)		
2295.002	5	WW	43559.52	$\frac{\frac{7}{2}}{9}$	2.203(5)	4f ⁷ 6s (⁹ S) 11p	10P
2294.568	100	WW	43567.76	5 5	2.0(1)	4f ⁷ 6s (⁹ S) 11p	^{10}P
$2292.683 \\ 2291.039$	$\begin{array}{c} 2 \\ 1500 \end{array}$	ww	43603.59 43634.86	୦. ଡା୍ବ ମ୍ବର୍ଷ ଶ୍ରଷ୍ଟ ହାସ	$0.715~(4) \\ { m P}$	4f ⁷ 6s (⁹ S) 11p	$^8\mathrm{P}$
2291.033 2290.921	2000	ww	43637.11	?	P	4f ⁷ 6s (⁹ S) 11p	^{8}P
2289.014	20		43673.46	5 2	1.794(1)		
2287.437	15		43703.57	$\frac{7}{2}$	1.359(1)		
2285.558	150		43739.50	$\frac{3}{2}$	1.652 (1)		
$\begin{array}{c} 2284.906 \\ 2280.273 \end{array}$	8 100		43751.97 43840.86	<u>2</u> 7	$egin{array}{c} 1.321 \; (3) \ 1.353 \; (2) \end{array}$		
2277.769	50		43889.05	$\frac{2}{7}$	1.632(3)		
2274.731	5		43947.66	୯. 5)ଖମଧାରୀ ପ୍ରାଧମାସମାସ କାଷ ନ.	P		
2274.309	2		43955.82	<u>.</u>	P		
2270.209	2		44035.19	୯- ଅଷ୍ଟାବର୍ଷ୍ଟାଷ୍ଟ୍ରଷ୍ଟାଷ୍ଟ୍ରଷ୍ଟ୍ରଷ୍ଟ୍ରଷ୍ଟ୍ରଷ୍ଟ୍ର	1.63 (1)		
2269.965	4	3 A7 3 A7	44039.93	2 7	1.66 (1)	AFT 6~ /95\ 10	1075
$2268.869 \ 2268.42$	$\frac{2}{1}$	WW WW	$44061.21 \\ 44070.22$	9	$egin{array}{c} 2.15 & (2) \ 1.99 & (5) \end{array}$	4f ⁷ 6s (⁹ S) 12p 4f ⁷ 6s (⁹ S) 12p	¹⁰ P
2267.881	150	WW	44080.39	$\frac{2}{7}$	1.96 (2)	4f ⁷ 6s (⁹ S) 12p	8P
2267.279	100	WW	44092.10	<u>5</u>	2.18 (1)	4f ⁷ 6s (⁹ S) 12p	^{8}P
2267.038	200		44096.79	<u>9</u> .	1.610 (1)	· · · -	
2263.830	150		44159.26	$\frac{7}{2}$	1.653 (1)		

Table 2 (cont.)

ABSORPTION SPECTRUM OF EUROPIUM

			1 ABLE	2 (cont.)		
			upper level			
wavelength/Å	intens	sity	cm ⁻¹	J	g_J	designation
	200	•	44171 50			0
$2263.199 \\ 2261.750$	5 0		44171.58 44199.87	ମୃଷ୍ଟାଷ୍ଟ୍ର ୧.	1.616 (2) 1.461 (2)	
2260.385	100		44226.56	2 7	P	
2259.796	2		44238.08	?	?	
2259.726	$\overline{2}$		44239.46	?	?	
2259.470	5 0		44244.47	$2\frac{9}{2}$	P	
2254.868	50	W	44334.75	?	P	
2254.761	5		44336.86	?	P	
2252.336	3		44384.60	ଟ୍ର <u>କ୍</u> ଷ ଦ ଟ୍ରାଜ୍ୟ ବ୍ୟବ୍ୟ ସ	1.118 (2)	
2250.969	2	WW	44411.55	<u>9</u> .	2.0(1)	4f ⁷ 6s (⁹ S) 13p ¹⁰ P
2250.296	5		44424.82	5	P	
2250.255	100	WW	44425.63	2/2	2.0 (1)	4f ⁷ 6s (⁹ S) 13p ⁸ P
2250.168	150	WW	44427.35	$\frac{3}{2}$	2.19 (1)	4f ⁷ 6s (⁹ S) 13p ⁸ P
2248.978	75	W	44450.86	$\frac{\dot{2}}{25}$	1.744 (2)	4f ⁷ 6s (⁷ S) 10p ⁶ P
2247.004	15	W	44489.91	; 2	P 1.94 (5)	4f ⁷ 6s (⁷ S) 10p ⁶ P
$2246.342 \\ 2245.029$	200 500		44503.02 44529.04	୦. କ୍ରିଷ ପ୍ରାୟ ମ୍ବିଷ ପ୍ରଥ ଧର୍ଷ	1.882 (5)	4f ⁷ 6s (⁷ S) 10p 8P
2243.390	150	W	44561.58	9	$egin{array}{c} 1.755 \ (2) \ 1.493 \ (1) \end{array}$	4f ⁷ 6s (⁷ S) 10p ⁸ P
2242.622	300	w	44576.83	2 7	2.0 (1)	4f ⁷ 6s (⁷ S) 10p ⁸ P
2241.926	100	w	44590.66	<u>5</u>	P 2.2 (1)	4f ⁷ 6s (⁷ S) 10p ⁸ P
2241.735	40	w	44594.46	5	P 1.67 (1)	11 05 (S) 10p 1
2241.482	20	w	44599.50	?	P 2.0 (1)	
2241.244	200	W	44604.24	$\frac{77}{2}$	1.71 (1)	
2240.748	3		44614.11	?	?`´	
2239.243	150	WW	44644.09	$\frac{7}{2}$	1.87 (1)	
2238.730	20		44654.31	$\frac{7}{2}$	1.662(2)	
2238.453	10	WW	44659.84	<u>9</u> .	2.0(1)	4f ⁷ 6s (⁹ S) 14p ¹⁰ P
2237.873	250	WW	44671.42	<u>9</u>	1.786 (5)	4f ⁷ 6s (⁹ S) 14p ⁸ P
$\boldsymbol{2236.52} \setminus$	500	W	44698.5	2	2.20 (1)	4f ⁷ 6s (⁹ S) 14p ⁸ P
2236.52 J			44698.5	<u>8</u> .	1.372 (2)	
2235.289	75		44723.05	$\frac{3}{2}$	1.92(2)	
2234.684	150	X A 7	44735.16	<u>2</u> 9.	1.81 (1)	
2233.943	100	W	44749.99	උ. උනු දැනුණු නම්	1.50(2)	
2232.260	150 5	W	44783.74 44793.78	2	1.71 (1) P	
$2231.759 \ 2231.371$	80	w	44801.58		P	
2230.198	50	w	44825.13	? <u>5</u> 2 ?	P 2.0 (1)	
2229.271	2	ww	44843.76	2 2	P P	4f ⁷ 6s (⁹ S) 15p ¹⁰ P
2228.869	100	ww	44851.85	5	\mathbf{P}	4f ⁷ 6s (⁹ S) 15p ⁸ P
2227.666	150		44876.07	$\frac{7}{2}$	1.74(1)	(, ,
2227.098	300		44887.53	$\frac{7}{2}$ $\frac{5}{2}$	P 2.28 (2)	4f ⁷ 6s (⁹ S) 15p ⁸ P
2227.027	300	W	44888.96	$\frac{7}{2}$	2.0(1)	4f ⁷ 6s (⁹ S) 15p ⁸ P
2225.348	10		44922.81	72727.	P	
2224.850	2		44932.85		?	
2224.767	30	W	44934.55	9. 2	1.58 (1)	
2223.270	2	~	44964.80		?	
2222.801	20	W	44974.29	5	P 2.0 (1)	467 0 (9G) 4 0 10D
2222.662	2	WW	44977.09	5	? D 0 (1)	4f ⁷ 6s (⁹ S) 16p ¹⁰ P
$2221.713 \\ 2221.194$	$\begin{array}{c} 75 \\ 150 \end{array}$	WW W	$\begin{array}{c} 44996.32 \\ 45006.82 \end{array}$? <u>9</u>	P 2.0 (1) 1.612 (5)	4f ⁷ 6s (⁹ S) 16p ⁸ P
2221.194 2220.909	300	ww	45012.59	<u>9</u> 2 ?	P 2.0 (1)	4f ⁷ 6s (⁹ S) 16p ⁸ P
2220.290	100	** **	45025.15	$\frac{\cdot}{\cdot}$	1.752 (5)	±1 03 (5) 10p 1
2218.450	1		45062.51	?	?	
2218.390	1		45063.73	?		
2217.200	5	W	45087.89	?7/2	?	4f ⁷ 6s (⁹ S) 17p ¹⁰ P
2216.643	1	W	45099.21	?	?	4f ⁷ 6s (⁹ S) 14 f ⁸ F
2216.269	100	WW	45106.83	?	P 2.0 (1)	4f ⁷ 6s (⁹ S) 17p ⁸ P
2216.059	150	WW	45111.10		P 2.0 (1)	4f ⁷ 6s (⁹ S) 17p ⁸ P
2215.798	100		45116.42	<u>9</u> 2522?	1.58 (1)	-
2215.574	5		45120.98	$\frac{75}{2}$	1.70 (5)	
2213.915	1		45154.80		?	
2213.840	3	TA7	45156.32	?	;	407 0 (00) 40 to
2213.252	8	W	45168.30	: 2 29	;	4f ⁷ 6s (⁹ S) 18p ¹⁰ P
2212.670	1	W	45180.18	୯୩ ପ୍ରାଷ ୧. ଜାର ୮ ରାଜ ର ୧. ୧.	. 5	4f ⁷ 6s (⁹ S) 18p ¹⁰ P
2212.404	1 50	ww	45185.63 45187.63	: <u>5</u>		4f ⁷ 6s (⁹ S) 15 f ⁸ F 4f ⁷ 6s (⁹ S) 18p ⁸ P
$2212.305 \\ 2212.218$	50 75	WW	$45187.63 \\ 45189.42$	<u>2</u> 7		4f ⁷ 6s (⁹ S) 18p ⁸ P 4f ⁷ 6s (⁹ S) 18p ⁸ P
2212.218 2212.129	100	ww	45191.23	<u>2</u> 9	; ;	4f ⁷ 6s (°S) 18p °P
4414.143	100	* * * *	10101.40	2	•	Tr on (D) Top T

[†] Wavenumbers taken from Russell & King (1939).

Table 3. Absorption spectrum of Europium 2189-2212 Å: wavelengths, intensities, UPPER ENERGY LEVELS AND EFFECTIVE QUANTUM NUMBERS

				~		
			upper level			
wavelength/Å	inte	nsity	cm ⁻¹	n^*	series	comments
2211.418	2	W `	45205.78	14.401		
2210.393	2		45226.72	14.695	Y	sharp
2209.891	2		45237.00	14.845		sharp
2209.767	1	W	45239.54	14.883		
2209.456	2	W	45245.91	14.980		
2209.220	25	WW	45250.73	15.055		
2209.181	25	WW	45251.54	15.067		
2208.962	20		45256.02	15.138	Z	
2208.829	100		45258.76	15.181		
2208.768	110	WW	45260.00	15.201		4f ⁷ 6s (⁹ S) 19p
2208.649	50	W	45262.44	15.238		
2206.886	80	W	45298.60	15.859		
2206.730	1		45301.79	15.917		
2206.665	2	W	45303.14	15.942		
2206.578	110	W	45304.93	15.975		4f ⁷ 6s (⁷ S) 11p
2206.551	20		$\boldsymbol{45305.47}$	15.985		
2206.420	10	W	45308.18	16.036		
2206.169	1		45313.31	16.133	Z	
2206.096	2		45314.82	16.162	Z	
2205.786	150	WW	45321.20	16.286		4f ⁷ 6s (⁹ S) 20p
2204.982	110	W	45337.71	16.621		
2204.879	150	W	45339.82	16.666		
2204.515	1		45347.29	16.825		
2204.290	2	WW	45351.93	16.927		
2204.107	2	WW	45355.70	17.011		
2203.830	1		45361.40	17.140	Z	
2203.686	50	WW	45364.35	17.208		4f ⁷ 6s (⁹ S) 21p
2203.532	150	WW	45367.53	17.283		4f ⁷ 6s (⁹ S) 21p
2202.833	3		45381.92	17.631		sharp
2202.555	3	W	45387.66	17.777		
2202.301	4	WW	45392.89	17.912		
2202.186	6	WW	45395.27	17.975		
2201.913	1		45400.87	18.125	Z	
2201.801	120	WW	45403.19	18.188		two lines
2201.570	80	W	45407.95	18.320		
2200.948	150	WW	45420.78	18.690	A'	
2200.816	50	W	45423.50	18.772	В'	
2200.719	2		45425.52	18.833		sharp
2200.629	50	WW	45427.36	18.889	$\mathbf{G'}$	
2200.572	8	WW	45428.55	18.926	\mathbf{D}'	
2200.540	10	WW	45429.20	18.946	D'	
2200.259	2	WW	45435.01	19.129		
2200.184	2	WW	45436.57	19.178		
2199.656	500	W	45447.46	19.538	A' B'	
2199.209	75	W	45456.70	19.860	C ′	
2199.118	2	W	45458.58	19.928	D'	? two lines
2198.943	1		45462.21	20.060		fairly sharp
2198.882	1		45463.45	20.105		
2198.746	3	W	45466.28	20.211		
2198.572	250	WW	45469.87	20.348	A'	
2198.484	120	W	45471.70	20.418	В′	
2197.987	75	W	45481.97	20.829	$\mathbf{C'}$	
2197.890	1		45483.98	20.912	$\mathbf{D'}$? two lines
2197.565	200	WW	45490.70	21.198	A'	
2197.464	100	W	45492.79	21.289	В'	
2197.071	1		45500.93	21.656	$\mathbf{E'}$	fairly sharp

TABLE 3 (cont.)

			upper level			
wavelength/Å	inte	nsity	cm ⁻¹	n^*	series	comments
2196.937	10	W	45503.70	21.785	C'	
2196.864	2		45505.22	21.857		
2196.820	1		45506.12	21.900		
2196.741	4	W	45507.76	21.979		
2196.637	75	WW	45509.92	22.084	A'	
2196.565	1		45511.41	22.158		
2196.264	2		45517.64	22.473	E'	fairly sharp
2196.065	2		45521.77	22.690	C ′	, 1
2195.886	1		45525.49	22.891	D	
2195.801	1		$\boldsymbol{45527.25}$	22.987		
2195.531	3		45532.84	23.301	$\mathbf{E'}$	sharp
2195.449	2		45534.55	23.402		•
2195.393	1		45535.70	23.471		
2195.079	3	W	45542.22	23.864	D	
2194.950	1		45544.90	24.031	A	
2194.820	10	W	45547.59	24.203	${f E}$	
2194.722	2		45549.63	24.336	\mathbf{C}	
2194.385	6	W	45556.61	24.808	\mathbf{D}	
2194.242	4	WW	45559.59	25.018	A	
2194.198	1		45560.51	25.084	В	
2194.142	1		45561.66	25.167	E	
2194.057	1		45563.42	25.296	\mathbf{C}	
2193.802	4	W	45568.72	25.696	\mathbf{D}	
2193.620	4	WW	45572.50	25.993	A	blend
2193.459	2		45575.84	26.265	\mathbf{C}	
2193.298	1		45579.19	26.546	D	
2193.125	1		45582.78	26.857	F	
2193.070	10	WW	45583.93	26.959	A	blend
2192.918	1		45587.09	27.246	\mathbf{C}	
2192.632	1		45593.04	27.811	\mathbf{F}	
2192.593	150	W	45593.85	27.891	Α	
2192.537	1		45595.01	28.006	В	
2192. 442	1		45597.00	28.208	\mathbf{C}	
2192.205	200	W	45601.92	28.724	A	
2192.105	3		45604.00	28.952	В	
2191.989	1		45606.41	29.221	D	
2191.926	120	W	45607.71	29.371	\mathbf{A}	
2191.867	100	W	45608.95	29.515	? F	
2191.713	1		45612.15	29.897	В	
2191.603	8		45614.44	30.179	D	blend
2191.384	2		45619.00	30.768	В	fairly sharp
2191.314	1		45620.47	30.96		diffuse
2191.242	1		45621.95	31.17	A D	blend
2191.175	2		45623.35	31.36	В	
2190.98	1		45627.41	31.95		diffuse
2190.92	1		45628.59	32.12		diffuse
2190.88	1		45629.54	32.27	В	diffuse
2190.68	1		45633.62	32.91		diffuse
2190.60	1		45635.41	33.21	В	diffuse
2190.38	1		45639.99	34.00		diffuse
2190.11	1		45645.51	35.03		diffuse
2189.90	1		45650.27	36.00		diffuse
2189.65	1		45654.57	36.96		diffuse

Vol. 283. A. 23

lines are contained in tables 2 and 3, a division being made at 2212 Å. Because of increasing line-density no useful Zeeman data can be deduced for lines shortward of this wavelength. However, it turns out that most of the high-lying levels can be fitted into series converging towards the first ionization limit (45 734.92 cm⁻¹). In table 3 we therefore include the effective quantum number (n^*) of each level with respect to this limit.

(a) Wavelengths, intensities and upper energy levels

In the first three columns of tables 2 and 3 are listed the wavelength in standard air, an estimate of the intensity and the vacuum wavenumber of every absorption line we could discover between 3600 and 2189 Å (the spectrum between 2189 and 2100 Å was described in I). Since every line is a transition from the ground level each vacuum wavenumber also determines the position of an upper energy-level. Comparisons between measurements on different plates suggest that wavelengths should be accurate to better than 0.005 Å and wavenumbers to better than 0.05 cm⁻¹, apart from a few extremely weak lines whose values are quoted to lower accuracy. Our measurements are superior in accuracy to the emission measurements of King (1938) but we note that there is good agreement between the two lists for wavelengths down to 2365 Å. At shorter wavelengths there are no obvious coincidences between our own lines and the earlier list, which extends down to 2109 Å. It seems either that the ground-level transitions did not occur with sufficient intensity in King's light-source or that his results contain a systematic wavelength error below 2365 Å. The reliability of our own wavelength scale is confirmed by measurements on several impurity lines (e.g. Zn I, 2138.57 Å) which yield wavelengths in good agreement with previously accepted values.

Intensity estimates are based on photoelectric measurements of plate transmission at peak absorption. They correspond roughly to a scale of absorption oscillator strength in which the strongest resonance line (4594 Å) has strength 100 000. Absolute accuracy is probably no better than order of magnitude since the plates were not calibrated for intensity measurement and no account was taken of differences in line-width. Many transitions to the lower excited levels (below 37 000 cm⁻¹) showed a large isotope shift (see part (c) of this section) and these lines are denoted by IS following the intensity. Other transitions throughout the spectrum showed obvious hyperfine structure: these are denoted by W (moderate h.f.s.) and WW (wide h.f.s.). Lines with wide hyperfine structure invariably showed a characteristic pattern in which the strongest component belonging to the isotope with the larger nuclear moment appeared as a satellite on the short-wavelength side of the main zero-field line (see figure 5a, plate 1).

(b) J-values and g_J-values

For the majority of lines, J-values and g_J-values could be determined unambiguously from the observed Zeeman patterns. The results are listed in tables 1 and 2. The figure in brackets following the g_{J} -value denotes the estimated error in the last decimal place quoted. Levels with $g_{J} = 2.0 \pm 0.1$ give rise to unresolved Zeeman patterns and consequent difficulties in the determination of J. All uncertain J-values must, however, be $\frac{5}{2}$, $\frac{7}{2}$, or $\frac{9}{2}$. As the density of lines increases towards the series limit the Zeeman patterns become increasingly more perturbed and difficult to interpret. In the region $2200 < \lambda < 2220$ Å some lines show the asymmetric Zeeman splitting characteristic of the quadratic Zeeman effect. These lines are clearly associated with high series members but none of the patterns are sufficiently well-defined to justify detailed measurement. At longer wavelengths there are isolated examples of close lines whose

patterns are distorted by mutual perturbation of the upper levels. When these perturbations are not too severe the g₁-values can still be derived by means of a fairly simple analysis based on second order perturbation theory. In cases of severe perturbation the Zeeman patterns become unrecognizable. The presence of perturbations is indicated by a letter P in the fifth column of table 2, and two interesting examples are shown in figures 5c and d, plate 1.

In an effort to discover the uncertain J-values we have searched the list of unclassified emission lines (King 1938) for transitions between our new upper levels and the low-lying odd levels arising from 4f⁷ (8S) 5d 6s. This approach proved fruitless. With the exception of a few levels associated with the ⁸P multiplets at about 40 600 and 42 100 cm⁻¹, levels above 40 000 cm⁻¹ in our list do not appear to contribute significantly to the emission spectrum.

TABLE 4. ISOTOPE SHIFTS IN Eu I

	4f ⁷ (8S) 5d 6p			4f ⁶ (7F) 5d 6s ²	
$level/cm^{-1}$	designation	$i.s./cm^{-1}$	$level/cm^{-1}$	designation	i.s./cm ⁻¹
28667.46	$^{10}{ m F}_{rac{5}{2}}$	-0.250	27852.95	$^8\mathrm{D}_{rac{5}{2}}$	+0.203
30800.71	$^8 ext{D}^2_{ frac{3}{2}}$	-0.250	29124.83	$^8 ext{G}_{f ar{f z}}^{f z}$	+0.212
30901.95	$^8\mathbf{D}_{\frac{9}{8}}^{\frac{2}{8}}$	-0.255	29809.26	8G <u>₹</u>	+0.207
30945.38	$^{10}\mathrm{D}_{5}^{-}$	-0.242	29838.63	$^8\mathbf{D}_{\frac{9}{2}}^{\frac{2}{2}}$	+0.210
31382.66	10 D $\frac{2}{9}$	-0.244	31107.36	⁶ P ₅	+0.170
31876.15	8F ₅	-0.262	31553.76	$^8F_{\frac{9}{2}}^2$	+0.194
32003.33	$^8 ext{F}_{rac{7}{2}}^2$	-0.255	32681.19	$^{6}P_{\frac{7}{2}}$	+0.140
32184.73	$^8\mathrm{F}_{rac{9}{2}}^2$	-0.172	32961.85	$^6 ext{H}_{ frac{7}{2}}^{ frac{7}{2}}$	+0.177
32398.32	10P ₂	-0.204	35050.64	$^6\mathrm{F}_{rac{7}{2}}^{^2}$	+0.160
32596.39	$^{10}\mathrm{P}_{\frac{9}{2}}^{2}$	-0.185		2	
33786.64	$^{8}P_{\frac{5}{2}}^{2}$	-0.160			
35731.68	e F. ë	-0.130			
36081.12	$^{6}\mathrm{F}_{\mathbf{Z}}^{-}$	-0.248			
36284.90	$^{6}F_{\frac{5}{2}}^{z}$	-0.237			
36586.35	$^8 ext{D}_{ extstyle{3\over2}}^2$	-0.192			

error in i.s. ≈ 0.010 cm⁻¹.

(c) Isotope shifts

Natural europium consists of two isotopes, ¹⁵¹Eu and ¹⁵³Eu, with almost equal abundances. The resolution of our spectra was such that isotope shifts $\gtrsim 0.1~\mathrm{cm^{-1}}$ were easily measurable. Lines showing a large isotope shift are denoted by IS following the intensity in table 2 and the corresponding measurements are listed in table 4. In discussing these we shall anticipate some of our conclusions concerning configuration assignments which are described in the next section. Large isotope shifts appear to be associated with transitions from the ground level to levels of just two configurations, 4f7 (8S) 5d 6p and 4f6 (7F) 5d 6s2, but not all transitions to these configurations show large shifts. Although the equal abundances of the two isotopes make it impossible for us to determine the sign of the shift, there is clear evidence that the shifts are reduced by mixing and must therefore be of opposite sign. There seems little doubt that the signs are the same as those observed in similar transitions in other rare earths (e.g. Sm I, Striganov, Katulin & Eliseev 1962) and appropriate signs have been incorporated into table 4. Despite the spread of values there is an apparent clustering about the shifts of -0.250 and +0.200 cm⁻¹ for transitions to 4f⁷ (8S) 5d 6p and 4f⁶ (7F) 5d 6s² respectively. These values must approximately represent the shifts of the pure configurations relative to 4f7 (8S) 6s2. Figure 5b, plate 1 shows an example of a transition with large isotope shift.

Transitions to levels of other configurations show no obvious evidence of isotope shift though,

355

in the case of 4f⁷ (8S) 6s np configurations, any isotope shift is likely to be masked by hyperfine structure. Transitions to 4f⁶ (7F) 5d² 6s are particularly sharp indicating approximately zero shift with respect to the ground level. The total disappearance of isotope shifts in transitions to levels higher than 36 600 cm⁻¹ suggests that configuration mixing is appreciable among the more highly excited levels.

4. Configuration structure

With the extensive new data on J-values and g_J -values we can now attempt to assign the energy-levels to configurations. The large spread of g_{J} -values throughout table 2 suggests that the concept of configurations retains some validity even as high as 45 000 cm⁻¹ above the ground level. In this section we shall consider those configurations based on both the 4f⁶ and 4f⁷ cores which can reasonably be treated individually. Consideration of the long series arising mainly from an excited p-electron will be deferred until the next section. Configuration assignments which can be made with some degree of confidence are given in the final column of table 2. For levels below 40 000 cm⁻¹ it is usually possible to give a term as well as a configuration assignment, though the use of LS-coupling labels is not intended to imply that a pure coupling scheme is entirely appropriate. Levels based on the 4f⁶ core are particularly strongly mixed. In comparing our conclusions with those of Russell & King (1939) we emphasize again that our results only concern levels with $J = \frac{5}{2}, \frac{7}{2}$ or $\frac{9}{2}$.

The levels of this configuration were identified by Russell & King (1939). In table 1 we compare our measured g_J -values with theoretical values calculated in LS-coupling and in intermediate coupling (Smith & Wybourne 1965). In every case there is excellent agreement between the measurement and the intermediate-coupling calculation.

Russell & King (1939) claimed to have discovered all the levels of this configuration but their identification of the higher 8P term was questioned by Smith & Wybourne (1965) on theoretical grounds. Our present results support the conclusion of Smith & Collins (1970) who, on the evidence of a low-resolution absorption spectrum, placed this term at about 42 000 cm⁻¹. This problem will be further discussed in the context of the long 8P series. We can confirm all the other assignments made by Russell & King apart from the levels ${}^8P_{\xi}$, ${}^6D_{\xi}$ and ${}^8F_{\xi}$ at 34 102, 38 457 and 39 086 cm⁻¹ respectively. No trace of any lines connected with these levels can be found on our plates. The absence of transitions to the last two levels is not surprising since the multiplets to which they belong are only weakly connected with the ground level. The absence of a transition to 34 102 cm⁻¹ is, however, very puzzling since Russell & King found good evidence for this level based on strong transitions to the low-lying ⁸D terms of 4f⁷ (⁸S) 5d 6s. In addition, the $J=\frac{5}{2}$ and $J=\frac{9}{2}$ members of the ⁸P multiplet are easily identifiable at 33 786 and 34 726 cm⁻¹ by means of their relatively strong transitions to the ground level. Only two levels with unresolved Zeeman patterns (compatible with ⁸P₄) contribute to the absorption spectrum in the region of 34 102 cm⁻¹. These are less favourably placed, at 33 879 and 34 546 cm⁻¹, with respect to the other members of the ⁸P multiplet and evidence to be presented in (c) below suggests an alternative interpretation. We can only assume that the level

357

at 34 102 cm⁻¹ is real and that its proximity to an ⁸P₄ level of 4f⁷ (⁸S) 6s 7p has produced an unusual cancellation in the transition probability to the ground level.

Agreement between the measured g_J-values and the intermediate-coupling calculation of Smith & Wybourne (1965) is not as impressive as in (a) above but the difference between observed and calculated values is less than 0.1 in every case except one. The exception is the ${}^{6}P_{\frac{5}{2}}$ level at 39 022 cm⁻¹ which appears to be strongly mixed with another $J=\frac{5}{2}$ level at 39 179 cm⁻¹. Transitions to the higher ⁸F term are very weak and the Zeeman patterns are extremely perturbed. This is compatible with the original analysis which discovered several levels in close proximity.

This configuration is sufficiently low-lying to be treated separately but identification of its levels raises many problems. Several of the assignments suggested by Russell & King (1939) are unacceptable on theoretical grounds. We expect to find four multiplets: 10P, 8P, 6P and 8P in order of increasing energy. By means of our Zeeman data we can immediately identify two ⁶P levels, at 35 612 and 35 703 cm⁻¹, and the three levels of the lower ⁸P term at 34 366, 34 556 and 34 562 cm⁻¹. The perturbation of the latter multiplet can be explained by the fact that it lies within a much wider 8P multiplet arising from 4f7 (8S) 5d 6p. The higher ⁸P multiplet of 4f⁷ (⁸S) 6s 7p is presumably to be found among the group of levels at about 36 500 cm⁻¹ all of which combine strongly with the ground level. A diagonalization of the f⁷ (8S) sp energy matrices with appropriate radial parameters predicts that the ¹⁰P term should be a normal multiplet centred at about 34 000 cm⁻¹ and with a total spread of about 300 cm⁻¹. The level at 33 908 cm⁻¹ has the appropriate J-and g_J -values for $^{10}P_{\frac{7}{4}}$ and is much better placed than the level at 36 005 cm⁻¹ suggested by Russell & King. On the other hand, Russell & King's identification of a level at 34 317 cm⁻¹ with ${}^{10}P_{\frac{1}{2}}$ is quite compatible with theory. There is no $J=\frac{9}{2}$ level between 33 908 and 34 317 cm⁻¹ but a likely candidate for the missing ¹⁰P occurs at 33 879 cm⁻¹. The associated absorption line has wide hyperfine structure, similar to that observed in the transition to 33 908 cm⁻¹, and an unresolved Zeeman pattern compatible with either ¹⁰P₂ or ⁸P₃. There remains the problem of the level at 34 546 cm⁻¹ identified by Russell & King as ¹⁰P₂: this also gives rise to an unresolved Zeeman pattern but has only moderate hyperfine structure. We believe this to be a $J=\frac{9}{2}$ level originating from 4f⁶ (⁷F) 5d² 6s. Its presence could explain why the true ¹⁰P_§ (33 879 cm⁻¹) is perturbed to below its expected position.

Smith & Wilson (1970), by means of a parametric calculation, were able to identify many of the octet levels of this configuration among the levels discovered by Russell & King in the region 27 500-33 000 cm⁻¹. On the evidence of our Zeeman data we can confirm all these identifications and in addition we can suggest likely identifications for most of the sextet levels. With one exception the ⁸H and ⁶H levels do not contribute significantly to the absorption spectrum. The exception is ⁶H₃ which presumably is able to make an observable transition to the ground level because of its proximity to ⁶P₄. A thorough search of our plates for the missing transitions has revealed two extremely weak lines corresponding to levels at 25 066.9 and 32 371.1 cm⁻¹. We were unable to obtain Zeeman patterns for these but the first is probably an 8H level and the second may be 6H5. Figure 1 illustrates the structure deduced for this configuration: unobserved levels (distinguished by broken lines) are drawn in the positions

predicted by Smith & Wilson (1970). Substantial departures from LS-coupling are indicated by the observed structure and confirmed by the g_{J} -values listed in table 2.

No levels of this configuration had been discovered prior to the present investigation but Brewer (1971) had predicted from thermodynamic data that the lowest levels should occur at about 30 000 cm⁻¹. On our plates we find evidence for three levels, at 31 203, 31 653 and 32 224 cm⁻¹, whose g_J -values are close to those expected for a ¹⁰I term. Only 4f⁶ 5d² 6s can provide such a term in this energy region. Four other levels below 36 050 cm⁻¹ do not fit into the configurations described in (a)–(d) above. We presume that these, at 33 245, 33 779, 34 546 and 36 005 cm⁻¹, must also originate from 4f⁶ 5d² 6s. On the evidence of their g_I-values and of their transitions to 4f⁷ (8S) 5d 6s the last two appear to have ¹⁰P character. Russell & King assigned them to 4f⁷ (8S) 6s 7p but in (c) above we have given reasons for rejecting these particular assignments. Dr J-F. Wyart of the Laboratoire Aimé Cotton, Orsay, France has kindly undertaken a preliminary calculation of 4f⁶ (7F) 5d² 6s. This suggests that there are many more levels below 36 000 cm⁻¹ than we have discovered and that the lowest levels might belong to a ¹⁰G rather than a ¹⁰I term. We conclude that levels of this configuration only contribute to the absorption spectrum when they happen to interact strongly with nearby levels to which transitions are more probable. It is nevertheless surprising that the ¹⁰I levels, which one would expect to be particularly pure, should give rise to easily observable lines.

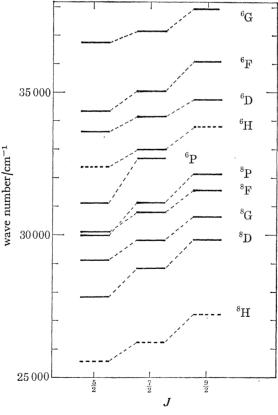


FIGURE 1. Structure of levels with $J = \frac{5}{2}, \frac{7}{2}$ and $\frac{9}{2}$ in the configuration 4f⁶ (7F) 5d 6s². Levels not yet discovered are denoted by broken lines and plotted in positions predicted by theory.

359

(f) 4f⁶ (7F) 5d³

According to Brewer (1971) levels of this configuration should commence at about 43 000 cm⁻¹. Several levels with low g_{J} -values in this region may belong to $4f^6$ (7F) $5d^3$ but could equally well originate from 4f⁷ (⁶I) 6s 6p.

(g) Levels based on excited parent terms of 4f7

The excited terms of 4f⁷ occur in the order ⁶P, ⁶I, ⁶D with increasing energy. In Eu III the separation between the ⁶P and ⁶I terms is about 3500 cm⁻¹ (Sugar & Spector 1974). Our spectra contain several moderately strong transitions to levels above 40 000 cm⁻¹ with unusually low g_J -values. These levels must surely originate from $4f^7$ (6I) 6s 6p and the most obvious of them are identified in the last column of table 2. It seems likely that levels based on the 6P parent will occur below 40 000 cm⁻¹, perhaps even as low as 36 500 cm⁻¹. In the region of 43 000 cm⁻¹ there are several levels with g_J-values of about 1.6 which again are associated with moderately strong absorption lines: these levels are probably the lowest arising from the ⁶D parent. Until we have some idea of the detailed structure of configurations built on excited terms of 4f7 we are unable to make further progress.

5. Long series

The absorption spectrum should contain long series arising from successive excitations of a p-electron. The series may be divided into four main channels: 10P and 8P channels converging towards the 4f⁷ 6s, ⁹S₄ ground level of Eu II together with ⁸P and ⁶P channels converging towards the 4f⁷ 6s ⁷S₃ limit only 1669 cm⁻¹ higher. From measurements on high series members (n > 40) these limits have been determined to be 45 734.9 and 47 404.1 cm⁻¹ (see I for details).

Levels of the 10 P channel as far as n = 15 (principal quantum number of the exited pelectron) were relatively easy to identify by means of the Zeeman data. Table 5 lists the levels together with their effective quantum numbers (n^*) , g_J -values and the estimated intensities of the corresponding absorption lines. All the levels have wide hyperfine structure. The decimal part of the effective quantum number is remarkably constant in this region showing that there are no significant perturbations of the series. Through lack of intensity the series cannot be followed beyond n = 15 but it is likely that ${}^{10}P$ levels reappear among the perturbed series to be described later.

Levels of the ⁶P channel are shown in table 6. The identifications are reasonably certain as far as n = 10 although the quantum defects $(n-n^*)$ are not as constant as in the previous case. Possible identifications for the n = 11 and n = 12 levels are shown in brackets. Effective quantum numbers are the only available evidence in this region. Our proposed identifications for the n = 12 levels correspond to the two broad features in the absorption spectrum at about 2187 Å just in front of the first ionization limit (see figure 3). Although there is no ⁶P continuum immediately beyond this limit it is possible that ⁶P levels just below the limit might derive additional width through spin-orbit interaction with the strongly autoionized n = 12 ⁸P levels.

The two ⁸P channels constitute a major problem. Although strong lines appear in approximately the positions indicated by a quantum defect analysis, there are very few regular multiplets. In some cases the appearance of two lines rather than three may simply be due to blending but it is clear that most multiplets are extremely perturbed. If the problem was simply 360

G. SMITH AND F. S TOMKINS

one of two interacting channels converging towards different limits, it should be amenable to a graphical analysis of the type described by Lu & Fano (1970). Investigations along these lines have, however, proved unsuccessful indicating the presence of perturbations external to the two main channels. The progress of the lower series members in both channels can be followed with reasonable certainty. Levels which can definitely be identified with 8P multiplets are noted in table 2 and the progress of the two channels is illustrated in figure 2 (a representative effective quantum number is plotted for each multiplet). Both channels appear to suffer a major perturbation in the region of 42 000 cm⁻¹. The levels at 42 010, 42 087 and 42 130 cm⁻¹ form an obvious 8P multiplet whose effective quantum numbers with respect to the two limits (5.45 and 4.53 respectively) do not fit easily into either of the 6s np channels. This multiplet is the only one above 40 000 cm⁻¹ (apart from the ⁸P at 40 600 cm⁻¹ which falls more nearly into the 6s np sequence) to make transitions of appreciable intensity to the low-lying 8D terms of 4f⁷ (8S) 5d 6s. We therefore identify the perturbing multiplet with the high-lying 8P term of $4f^{7}(^{8}S)$ 5d 6p (see § 3(b)) in agreement with Smith & Collins (1970).

Table 5. Rydberg series in Eu 1: 4f⁷ 6s (9S) np, ¹⁰P (limit: 45 734.92 cm⁻¹)

n	$level/cm^{-1}$	J	n^*	g_J	int
6	$14\ 067.79$	$\frac{7}{2}$	1.861	2.191	360
	14 563.61	રન્ય ભુંચરનુંય ભુંચરનુંય ભુંચરનુંય ભુંચરનુંય ભુંચરનુંય ભુંચરનુંય ભુંચરનુંય ભુંચ	1.876	1.929	930
7	33 908.81	$\frac{7}{2}$	3.046	2.180	500
		<u>9</u>	Securities.		
8	39 204.0	$\frac{7}{2}$	4.099		1
	39 256.45	<u>9</u>	4.116	1.95	45
9	41 515.52	$\frac{7}{2}$	5.100	2.210	350
	41 540.43	<u>9</u> .	5.115	1.97	560
10	$42\ 787.00$	$\frac{7}{2}$	6.101	2.210	1
	42 801.24	<u>9</u> .	6.116	2.00	2
11	$43\ 559.52$	$\frac{7}{2}$	7.102	2.203	1
	$43\ 567.76$	<u>9</u>	7.116	2.0	380
12	44 061.21	$\frac{7}{2}$	8.097	2.150	1
	$44\ 070.22$	<u>9</u>	8.119	1.99	1
13	44 411.55		9.106		1
14	44 659.84		10.103		3
15	44 843.61		11.106	***************************************	1

Table 6. Rydberg series in Eu 1: 4f⁷ 6s (⁷S) np, ⁶P (Limit: 47 404.13 cm⁻¹)†

n	$level/cm^{-1}$	J	n^*	g_J	int
6	17 340.65	$\frac{7}{2}$	1.911	1.787	970
	17 707.40	$\frac{\overline{5}}{2}$	1.922	1.94	780
7	35 612.58	$\frac{7}{2}$	3.051	1.716	450
	35 703.76	5 2	3.063	1.89	350
8	40 862.41	<u> </u>	4.096	1.692	630
	40 939.36	$\frac{\overline{5}}{2}$	4.120	1.88	500
9	43 168.06	$\frac{\overline{7}}{2}$	5.090	1.619	40
	$43\ 228.62$	$\frac{\bar{5}}{2}$	5.127	1.84	320
10	$44 \ 450.86$	$\frac{\overline{7}}{2}$	6.096	1.744	55
	44 489.91	5 2	6.136	1.94	15
11	$(45\ 205.78)$		7.066	Altre-Service	2
	(45239.54)		7.121		1
12	(45 697)	-	8.02		10
	$(45\ 713)$		8.06		5

[†] Doubtful assignments are enclosed in brackets.

24

ABSORPTION SPECTRUM OF EUROPIUM

361

The (9S) np, 8P and (7S) np, 8P channels, although suffering other smaller perturbations in addition to the major perturbation described above, may be followed as far as n = 18 and n = 11respectively. The n = 12 levels of the second channel probably lie beyond the first ionization limit and, together with subsequent series members, form the basis for the distinctive autoionization features described in I. Beyond n = 18 the first channel suffers such severe perturbations that, apart from perhaps n = 19 and n = 20, it no longer makes sense to label levels in

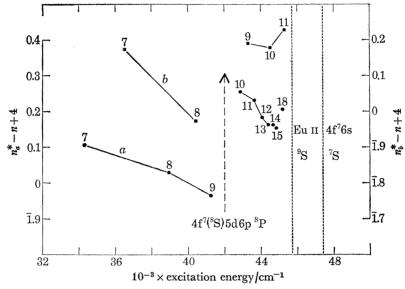


FIGURE 2. Effective quantum number (n^*) plot for lower members of the two 8 P channels (a and b) arising from 4f⁷ 6s (9S) np and 4f⁷ 6s (7S) np respectively. Each point is labelled with the appropriate value of the principal quantum number (n).

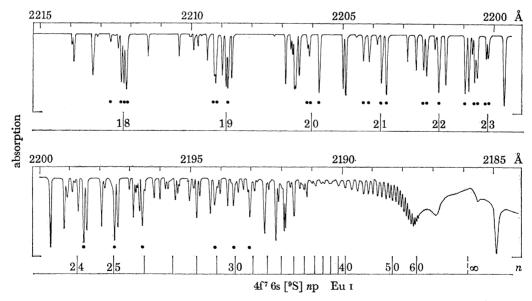


FIGURE 3. Photoelectric scan of the europium absorption spectrum between 2215 and 2185 Å. Filled circles indicate lines with wide hyperfine structure. Positions predicted for unperturbed members of the 8P channel arising from 4f⁷ 6s (9S) np are marked below the scan and labelled with the appropriate principal quantum number (n).

an ⁸P sequence. The situation is illustrated in figure 3 which shows a photoelectric scan covering the last 30 Å prior to the ionization limit. One might hope to see regular triplets of lines converging towards the limit but there is only one obvious triplet – at 2212 Å (n = 18). This triplet shows the 10:8:6 intensity ratios characteristic of transitions to an unperturbed ⁸P term, thus enabling J-values to be assigned. Taking this triplet to define the quantum defect for unperturbed terms we have marked on figure 3 the positions predicted for other channel members as far as n = 40. Clusters of strong lines occur close to these predicted positions but there are more lines than one would expect and no obvious multiplets. Many of the lines (those marked with filled circles in figure 3) show the wide hyperfine structure which seems to be characteristic of levels built upon 4f⁷ 6s, 9S. No lines in this region produce recognizable Zeeman patterns so further interpretation must depend on a careful study of effective quantum numbers.

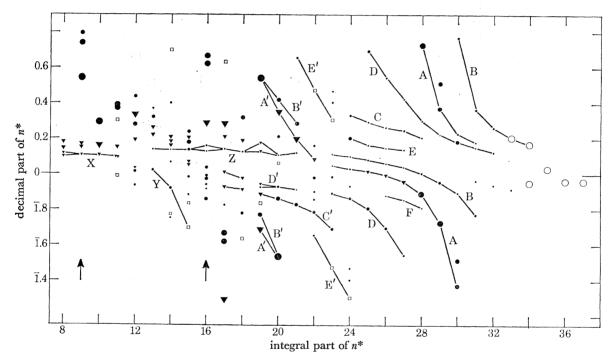


FIGURE 4. Effective quantum number (n^*) plot for levels near the first ionization limit in europium. Links are drawn between those levels which clearly belong to series. Arrows indicate the regions occupied by the n=10 and n=11 multiplets arising from 46^7 6s (^7S) np. Key: \triangledown , levels with wide hyperfine structure; \odot , levels with moderate h.f.s.; , relatively sharp levels; , diffuse levels. The size of each symbol (apart from those representing diffuse levels) indicates roughly the strength of the associated absorption line. Note that some symbols well away from the main channels (ordinate ca. 0.2) are plotted both at the top and at the bottom of the figure with a change of one unit in x- and y-coordinates,

In table 3 we list the effective quantum numbers, with respect to the first ionization limit, of all levels between 45 200 cm⁻¹ ($n^* \approx 14$) and 45 655 cm⁻¹ ($n^* \approx 37$) which can definitely be established from the absorption spectrum. The levels are displayed in figure 4 where we have plotted the decimal part of each effective quantum number $(n^* - n + 4 \text{ for p-levels})$ against the corresponding integral part (n-4). Any point in figure 4 can easily be identified with a level in table 3 by combining x- and y-coordinates in the form x+y to give the full effective quantum number. In the figure we have used different symbols to distinguish levels which appear sharp from those with moderate or wide hyperfine structure. The size of each

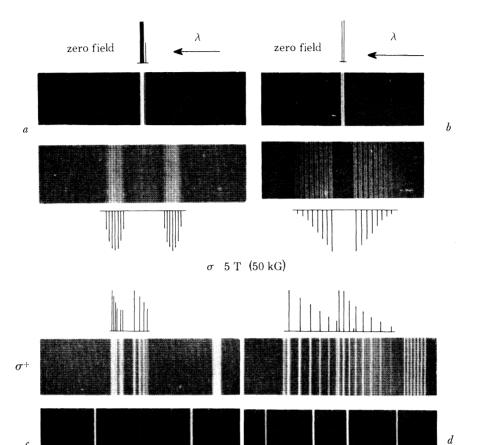
filled circle or triangle gives a rough indication of the strength of the associated absorption line. A few levels have been included both at the top and at the bottom of the figure (with the appropriate change of one unit in x- and y-coordinates) so as to illustrate their relation to other levels more clearly. Levels which appear sharp (open squares) are unlikely to be part of the basic series structure but may be associated with perturbations. The diffuse levels on the right hand side of the figure merge into the single long series which was described in detail in I. The associated absorption lines can be seen extending to beyond n = 60 in figure 3. On the left hand side of figure 4 the main channel of (9S) np, 8P levels is represented by the sequence of heavy triangular symbols proceeding roughly parallel to the x-axis at an ordinate of about 0.2. Arrows at $n^* = 9$ and $n^* = 16$ indicate the regions occupied by the n = 10 and n = 11 members of the (7S) np, 8P channel. An excess of levels associated with strong absorption lines is evident in these regions and at $n^* = 16$ the main channel suffers a perturbation. Since the n = 12 members of the second ⁸P channel probably lie beyond the ionization limit, any other perturbations in the region covered by figure 4 must have some other explanation.

ABSORPTION SPECTRUM OF EUROPIUM

A likely source of further perturbations is the configuration 4f⁷ (8S) 5d 7p whose lower levels are believed to occur in the region of the first ionization limit. Among these will be both ¹⁰P and ⁸P levels which can interact with the corresponding series converging towards this limit. Parr (1971) identified two strong resonances in his photoionization spectrum with the ⁸P₄ and ${}^8P_{\frac{9}{2}}$ levels of $4f^7$ (8S) 5d 7p. These features are clearly present in our absorption spectrum at 2184.9 Å (see figure 3) and 2166.5 Å (see figure 1 of I). We agree that these features must arise from ⁸P levels but can find no strong evidence for the particular choice of J-values. We have estimated appropriate radial parameters for 4f7 (8S) 5d 7p and calculated the approximate energy structure by diagonalizing the combined electrostatic and spin-orbit matrices. Our calculation slightly favours the association of the two above features with ⁸P₅ and ⁸P₇ respectively. The alternative interpretation suggested by Parr cannot, however, be ruled out and this would imply the presence of an $^8P_{\frac{5}{2}}$ level at 45450 ± 100 cm⁻¹. In either case we predict $^{10}P_{z}$ and $^{10}P_{\frac{9}{3}}$ levels at 45 300 ± 150 cm⁻¹ and 45 600 ± 150 cm⁻¹ respectively.

In figure 4 we have drawn links between those levels which appear to fall into series. In establishing these links we have sought both a well-defined sequence of n^* values and similarity in appearance of the associated absorption lines. On the right of the figure almost all the levels can be arranged into five, or possibly six, series (labelled A-F). Series F is rather poorly defined but may be connected with the level at $n^* = 29.5$ which would otherwise be isolated. The five main series can be traced backwards through at least one perturbation. There is an intensity minimum in the region of $n^* = 23$ and although further series, labelled A'-E', can be discerned to the left of here it is not obvious how these relate to the first group. It seems likely that A' and A are connected since many levels in both series have wide hyperfine structure and are associated with strong absorption lines. The connections C' to C and E' to E also appear logical. Series B, however, might be related either to B' or to the weak series Z. Similarly D' might be related either to D or to F. Series X on the left hand side of the figure is the end of the unperturbed ¹⁰P channel listed in table 5. Slightly to the right of the point where series X disappears is a short series (labelled Y) culminating in a sharp level at $n^* = 14.70 \, (45 \, 226 \, \text{cm}^{-1})$. Series Y cannot be an 8P series since a complete 8P multiplet is present at $n^* \approx 14.2$. Series Y must therefore be a ¹⁰P series and seems likely to be ¹⁰P₄. If we identify the perturbing level at 45 226 cm⁻¹ as ¹⁰P₄ of 4f⁷ (8S) 5d 7p we should expect, on the basis of our calculation, to find the corresponding ¹⁰P₂ at about 45 500 cm⁻¹. This could explain the perturbation in either C'

or E' at n* \approx 24. Series Y probably reappears as series D' but this cannot be confirmed without knowledge of J-values. The only other obvious series in the central region of figure 4 is a series (labelled Z) associated with very weak absorption lines and with relatively constant quantum defect (ordinate ≈ 0.14). This can only be the series (9 S) nf, 8 F which is likely to appear at high principal quantum numbers because of l-mixing. This series will be perturbed by the 8F levels of 4f⁷ (8S) 5d 7p which, according to our calculation, lie in the region $45\,600\pm200$ cm⁻¹.


The central region of figure 4 between $n^* = 16$ and $n^* = 19$ is extremely confused. The spectrum is dominated by pairs of strong lines, one line of each pair having wide hyperfine structure and the other having only moderate hyperfine structure. The corresponding levels form series A' and B'. The level at 45 447 cm⁻¹ fits into this sequence and must therefore be double. This would explain why the associated absorption line is much the strongest in this part of the spectrum. The strength of the lines associated with series A' and B' indicates that these series must originate from ⁸P levels and must somehow join the main ⁸P channel at an ordinate of 0.2. The nature of this connection remains obscure, as does the origin of the perturbations at $n^* \approx 19$. Neither can we offer any explanation for the perturbations in A, B and D at $n^* \approx 30$. It is tempting to identify our five main channels with the five 10 P and 8 P levels which can make transitions to the $J=\frac{7}{2}$ ground level. However, we cannot rule out the possibility that one or two of the weaker series might involve f-electrons rather than p-electrons. The assignment of the levels to the different series is given in table 3. We emphasize that, apart from the levels marked sharp, even those levels without a label must in some way yet to be determined fit into the series structure.

6. Conclusion

A high-resolution study of the europium absorption spectrum has yielded extensive information about the energy structure of even-parity excited levels. J-values and g_J -values have been determined for many of these levels by means of the longitudinal Zeeman effect. Although only levels with $J=\frac{5}{2},\frac{7}{2}$ or $\frac{9}{2}$ are accessible from the ground level, a knowledge of these is sufficient to give a much clearer picture of the configuration structure than was hitherto available. All levels below 36 000 cm⁻¹ which contribute to the absorption spectrum can be assigned to configurations, and, where intermediate-coupling calculations are available, there is good agreement between calculated and measured g_J -values. Levels of $4f^6$ (7F) $5d^2$ 6s have been identified for the first time but not in sufficient quantity to determine the detailed structure within this configuration. At higher energies the analysis is complicated by the presence of levels based on excited terms of the 4f⁷ core. Levels arising from 4f⁷ (6I) have been identified but again there is insufficient information to determine the detailed structure. The wide range of g_{J} -values revealed by the present experiment suggests that, even among levels of fairly high excitation, further progress with a theoretical interpretation in terms of separate configurations might be possible.

The absorption spectrum also provides us with an opportunity to study the long series converging towards the first and second ionization limits. Series of the type 4f⁷ 6s (9S) np and 4f⁷ 6s (9S) nf have been discovered converging towards the first limit and 4f⁷ 6s (7S) np converging towards the second. The five series arising from 4f⁷ 6s (9S) np are of particular interest. For $n \leq 18$ they may be divided into ¹⁰P and ⁸P channels though minor perturbations of the latter channel often make it impossible to identify all three levels comprising the 8P multiplet.

Phil. Trans. R. Soc. Lond. A, volume 283

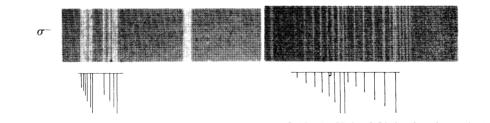


FIGURE 5. Examples of the longitudinal Zeeman effect at a field of 5 T (50 kG) in the absorption spectrum of europium. All transitions are from the $J=\frac{7}{2}$ ground level $(g_J=1.9935)$.

- (a) 2948.22 Å: transition to a $J=\frac{7}{2}$ upper level $(g_J=2.18)$ with hyperfine structure typical of a 4f7 6s (9S) np series member.
 - (b) 3235.11 Å: transition to a $J = \frac{9}{2}$ upper level $(g_J = 1.71)$ with large isotope shift.
- (c) 2732.60/2731.36 Å: transition on the left is to a $J = \frac{5}{2}$ upper level $(g_J = 1.97)$. Adjacent to this is a $J=\frac{3}{2}$ level to which transitions are normally forbidden. In the presence of the field, there is mutual perturbation between corresponding magnetic sub-levels and four additional components appear in each σ -group. In the absence of the perturbation the transition to the $J=\frac{5}{2}$ level would appear like the typical unresolved pattern on the right.
- (d) 2304.91/.48 Å: the transitions in the centre are to two mutually perturbing $J = \frac{9}{2}$ levels with equal g_J-values (1.15). Note that the Zeeman pattern is symmetrical about a point mid-way between the two zero-field lines. The advantage of separating σ^+ from σ^- is evident in this case. The right hand transition is to a $J=\frac{7}{2}$ upper level and the left hand transition has an unresolved pattern.

365

Between n = 18 and n = 40 all five series suffer such severe perturbations that they cannot be followed continuously. The origins of most of these perturbations remain unknown. Lack of knowledge of J-values and the presence of additional series arising from excited f-electrons complicates the analysis. If a few J-values could be determined, perhaps from measurements of hyperfine splittings, for the isolated sections of series discovered at n > 23, it should be possible to relate these sections to the main channels. The nature of the perturbing levels is likely to remain a mystery, however, since they have largely been assimilated into the existing series and will not therefore have any properties by which they may be distinguished.

An early set of plates, which helped to stimulate this project, was measured at Imperial College, University of London, and we should like to express our grateful thanks to Professor W. R. S. Garton, F.R.S. and Mr J. E. G. Wheaton for help and hospitality received while visiting their laboratory. Mr B. Ercoli of the Argonne National Laboratory rendered invaluable assistance with the construction and operation of the apparatus used in this investigation. We are also indebted to Dr J. F. Wyart of the Laboratoire Aimé Cotton, Orsay, France, who undertook a theoretical calculation on our behalf which helped to clarify our interpretation of the spectrum. One of us (G.S.) gratefully acknowledges financial support, for his visit to Argonne, from Oxford University, the Royal Society of London and the National Bureau of Standards, Washington D.C. This work was supported in part by the U.S. Atomic Energy Commission.

REFERENCES

Brewer, L. 1971 J. opt. Soc. Am. 61, 1101.

Tomkins, F. S. & Fred, M. 1963 Appl. Optics 2, 715. Vander Sluis, K. L. 1956 J. opt. Soc. Am. 46, 605.

Giacchetti, A., Stanley, R. W. & Zalubas, R. 1970 J. opt. Soc. Am. 69, 474. King, A. S. 1938 Astrophys. J. 89, 377. Lu, K. T. & Fano, U. 1970 Phys. Rev. A2, 81. Parr, A. C. 1971 J. chem. Phys. 54, 3161. Russell, H. N. & King, A. S. 1939 Astrophys. J. 90, 155. Sandars, P. G. H. & Woodgate, G. K. 1960 Proc. R. Soc. Lond. A 257, 269. Smith, G. & Collins, B. S. 1970 J. opt. Soc. Am. 60, 866. Smith, G. & Tomkins, F. S. 1975 Proc. R. Soc. Lond. A 342, 149. Smith, G. & Wilson, M. 1970 J. opt. Soc. Am. 60, 1527. Smith, G. & Wybourne, B. G. 1965 J. opt. Soc. Am. 55, 121. Striganov, A. R., Katulin, V. & Eliseev, V. V. 1962 Opt. & Spectrosc. 12, 91. Sugar, J. & Spector, N. 1974 J. opt. Soc. Am. 64, 1484. Tomkins, F. S. & Fred, M. 1951 J. opt. Soc. Am. 41, 641. Tomkins, F. S. & Fred, M. 1954 Spectrochim. Acta 6, 139.

IGURE 5. Examples of the longitudinal Zeeman effect at a field of 5 T (50 kG) in the absorption spectrum of europium. All transitions are from the $J=\frac{7}{2}$ ground level $(g_J=1.9935)$.

(a) 2948.22 Å: transition to a $J = \frac{7}{2}$ upper level $(g_J = 2.18)$ with hyperfine structure typical of a 4f7 6s (9S) np series member.

(b) 3235.11 Å: transition to a $J = \frac{9}{2}$ upper level $(g_J = 1.71)$ with large isotope shift.

(c) 2732.60/2731.36 Å: transition on the left is to a $J = \frac{5}{2}$ upper level $(g_J = 1.97)$. Adjacent to this is a $J=\frac{3}{2}$ level to which transitions are normally forbidden. In the presence of the field, there is mutual perturbation between corresponding magnetic sub-levels and four additional components appear in each σ -group. In the absence of the perturbation the transition to the $J=\frac{5}{2}$ level would appear like the typical unresolved pattern on the right.

(d) 2304.91/.48 Å: the transitions in the centre are to two mutually perturbing $J = \frac{9}{2}$ levels with equal g_J -values (1.15). Note that the Zeeman pattern is symmetrical about a point mid-way between the two zero-field lines. The advantage of separating σ^+ from σ^- is evident in this case. The right hand transition is

to a $J=\frac{7}{2}$ upper level and the left hand transition has an unresolved pattern.

TRANSACTIONS SOCIETY A

PHILOSOPHICAL THE ROYAL PHYBRAN TRANSACTIONS SOCIETY & ENGINE SCIENCES